Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We discuss the Onsager theory of wall-bounded turbulence, analysing the momentum dissipation anomaly hypothesized by Taylor. Turbulent drag laws observed with both smooth and rough walls imply ultraviolet divergences of velocity gradients. These are eliminated by a coarse-graining operation, filtering out small-scale eddies and windowing out near-wall eddies, thus introducing two arbitrary regularization length-scales. The regularized equations for resolved eddies correspond to the weak formulation of the Navier–Stokes equation and contain, in addition to the usual turbulent stress, also an inertial drag force modelling momentum exchange with unresolved near-wall eddies. Using an Onsager-type argument based on the principle of renormalization group invariance, we derive an upper bound on wall friction by a function of Reynolds number determined by the modulus of continuity of the velocity at the wall. Our main result is a deterministic version of Prandtl’s relation between the Blasius − 1 / 4 drag law and the 1/7 power-law profile of the mean streamwise velocity. At higher Reynolds, the von Kármán–Prandtl drag law requires instead a slow logarithmic approach of velocity to zero at the wall. We discuss briefly also the large-eddy simulation of wall-bounded flows and use of iterative renormalization group methods to establish universal statistics in the inertial sublayer. This article is part of the theme issue ‘Scaling the turbulence edifice (part 1)’.more » « less
-
null (Ed.)Prior mathematical work of Constantin & Iyer ( Commun. Pure Appl. Maths , vol. 61, 2008, pp. 330–345; Ann. Appl. Probab. , vol. 21, 2011, pp. 1466–1492) has shown that incompressible Navier–Stokes solutions possess infinitely many stochastic Lagrangian conservation laws for vorticity, backward in time, which generalize the invariants of Cauchy ( Sciences mathématiques et physique , vol. I, 1815, pp. 33–73) for smooth Euler solutions. We reformulate this theory for the case of wall-bounded flows by appealing to the Kuz'min ( Phys. Lett. A , vol. 96, 1983, pp. 88–90)–Oseledets ( Russ. Math. Surv. , vol. 44, 1989, p. 210) representation of Navier–Stokes dynamics, in terms of the vortex-momentum density associated to a continuous distribution of infinitesimal vortex rings. The Constantin–Iyer theory provides an exact representation for vorticity at any interior point as an average over stochastic vorticity contributions transported from the wall. We point out relations of this Lagrangian formulation with the Eulerian theory of Lighthill (Boundary layer theory. In Laminar Boundary Layers (ed. L. Rosenhead), 1963, pp. 46–113)–Morton ( Geophys. Astrophys. Fluid Dyn. , vol. 28, 1984, pp. 277–308) for vorticity generation at solid walls, and also with a statistical result of Taylor ( Proc. R. Soc. Lond. A , vol. 135, 1932, pp. 685–702)–Huggins ( J. Low Temp. Phys. , vol. 96, 1994, pp. 317–346), which connects dissipative drag with organized cross-stream motion of vorticity and which is closely analogous to the ‘Josephson–Anderson relation’ for quantum superfluids. We elaborate a Monte Carlo numerical Lagrangian scheme to calculate the stochastic Cauchy invariants and their statistics, given the Eulerian space–time velocity field. The method is validated using an online database of a turbulent channel-flow simulation (Graham et al. , J. Turbul. , vol. 17, 2016, pp. 181–215), where conservation of the mean Cauchy invariant is verified for two selected buffer-layer events corresponding to an ‘ejection’ and a ‘sweep’. The variances of the stochastic Cauchy invariants grow exponentially backward in time, however, revealing Lagrangian chaos of the stochastic trajectories undergoing both fluid advection and viscous diffusion.more » « less
-
null (Ed.)We use an online database of a turbulent channel-flow simulation at $$Re_\tau =1000$$ (Graham et al. J. Turbul. , vol. 17, issue 2, 2016, pp. 181–215) to determine the origin of vorticity in the near-wall buffer layer. Following an experimental study of Sheng et al. ( J. Fluid Mech. , vol. 633, 2009, pp.17–60), we identify typical ‘ejection’ and ‘sweep’ events in the buffer layer by local minima/maxima of the wall stress. In contrast to their conjecture, however, we find that vortex lifting from the wall is not a discrete event requiring $$\sim$$ 1 viscous time and $$\sim$$ 10 wall units, but is instead a distributed process over a space–time region at least $$1\sim 2$$ orders of magnitude larger in extent. To reach this conclusion, we exploit a rigorous mathematical theory of vorticity dynamics for Navier–Stokes solutions, in terms of stochastic Lagrangian flows and stochastic Cauchy invariants, conserved on average backward in time. This theory yields exact expressions for vorticity inside the flow domain in terms of vorticity at the wall, as transported by viscous diffusion and by nonlinear advection, stretching and rotation. We show that Lagrangian chaos observed in the buffer layer can be reconciled with saturated vorticity magnitude by ‘virtual reconnection’: although the Eulerian vorticity field in the viscous sublayer has a single sign of spanwise component, opposite signs of Lagrangian vorticity evolve by rotation and cancel by viscous destruction. Our analysis reveals many unifying features of classical fluids and quantum superfluids. We argue that ‘bundles’ of quantized vortices in superfluid turbulence will also exhibit stochastic Lagrangian dynamics and satisfy stochastic conservation laws resulting from particle relabelling symmetry.more » « less
An official website of the United States government
